
ON HEATING AND MELTING OF A SOLID BODY 
OWING TO FRICTION 

(0 NADBEVANII I PLAVLENII TVERDODO TELA OT TRENIIA) 

PYY Vo1.22, No.5, 1958, pp.577-585 

S. S. GRIGORIAN 
(bloscow) 

(Received 15 March 1958) 

The formulation and solution for the simplest case of two problems 

dealing with heating and melting of a solid body by friction are 

given in this article. The first is the problem of friction of a solid 
body upon a solid body. The second is the problem of the flow around 
a solid body of a viscous incompressible liquid. 

1. 1. If two solid bodies, in contact at some surface and pressed by 

some force in the direction normal to that surface, are brought into rela- 

tive motion, while maintaining their contact and mutual compression, they 

will be heated by friction because of the conversion of mechanical 

energy into heat. At some particular conditions the amount of heat F?;ene- 

rated may be sufficient to begin melting one or both of the rubbing 

bodies. ‘Ihus, at the instant when at some contact areas the melting tempe- 

rature of one of the bodies is reached, the melting front will begin to 

move toward from that surface; the melting front separates the liquid and 

solid phases of the material. While the bodies are in relative motion and 

the liquid phase appears generally speaking - as a viscous liquid, the 

latter will be drawn into motion. Consequently, the problem must be 

solved in the following manner. First, it is necessary to solve a simple 

transient heat transfer problem knowina initial and boundary conditions 

(the boundary conditions are determined by a given connection between 

heat flux at contactinK areas, which is determined there by the amount of 

heat generated by friction). If in this solution at some boundary locality, 

at a point or at a line, the temperature reaches the melting point and in 

the next instant in that region and in its neighborhood the temperature 

is above melting, it is necessary, be&ninn at this instant, to solve the 

problem by considering the formation of the liquid phase. Indeed, it is 

necessary to introduce into the investigation the region within which the 

material is in a molten state and flows. The temperature distribution in 

the liquid phase then must be found,using the heat conductivity equation 

of the flowing liquid. 'Ihe flow of liquid itself must be found with the 
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use of Navier-Stokes equations for the incompressible fluid, since the 

molten metal is a liquid which is considered to be incompressible. The 

boundary between the liquid and solid phases (the melting front) is 

formed in a point or on a line at the contact area and is not known in 

advance. It should be found while solving the problem. Definite condi- 

tions of compatibility should be satisfied on that boundary; they are due 

to basic laws, governing the investigated phenomenon and binding together 

the values of the data looked for on both sides of the melting front. The 

temperature distribution in the solid phase should be obtained by the 
use of the ordinary heat conductivity equation. 

It should be noted that the problem discussed is - from a physical 

point of view - a complicated variant of Stefan’s classical problem of 

melting and freezing of an undisturbed medium. The complication consists 

in the fact that the liquid phase, here, is set in motion; consequently, 

for the solution of this problem, it is necessary to introduce the hydro- 

dynamics of the viscous liquid. This last condition renders the mathe- 
matical problem in principle more complicated than Stefan’s problem. 

Here we will examine the simplest self-similar solution of the problem, 

which will permit a closed form solution and will manifest the most 

significant qualitative properties of the phenomenon. 

2. The laws of mass and energy conservation and the momentum equation 

should be satisfied on the melting front. This leads to the following 

conditions: 

1’1 (D -- If,,) = p2 (D - VT?21 

Where D is front velocity along the normal, and the indices n and r 
signify the normal and the tangential component, respectively to the 

front surface. The letter E indicates the internal energy of a unit mass; 
the meaning of other symbols is evident without explanation. 

Relationships (1.1) show the possibility of two types of surface dis- 
continuities on which melting takes place. First, there are discontinuitiea 

on which stresses become discontinuous. These are shock waves, differing 
from ordinary ones by the fact that the material in them melts. On these 
surfaces the temperature, in general, becomes discontinuous. Secondly, 

there are surfaces on which only the heat flux becomes discontinuous, i.e. 
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dT/& and, possibly, the density. C&r these surfaces the temperature is 

continuous and is equal to the melting temperature. Such types of dis- 

continuities can be called weak waves of melting. 

3, l.ct a solid plate in the form of a flat surface be pressed on the 

boundary of a body which occupies half space and has a uniform even 

temperature, and let the plate benin to mbve parallel to itself with a 

constant velocity vo. We will first solve an ordinary heat transfer 

problem and will find the conditions at which melting will start. By f 

we will denote the coefficient of friction between the plate and the body. 

In a unit of time fPu, units of heat will flow through a unit area of 

boundary; here P is the pressure of the plate upon the body (we consider 

that all the work of friction forces is absorbed by the body only, i.e. 

the plate is adiabatic). If P = At”%“, the problem will be reduced to 

integration of a simple equation; the problem thus has a self-similar 

solution. Indeed, the problem consists in the determination of the solid 

phase temperature Tl as a solution of equation 

dT1 -- 
dt 

with additional conditions 

T, (Lx, 0) = - To < 0, 87’1 
l3X X=0 

= - -& fA*.,p-‘I* 

(1.2) 

(1.3) 

Where ai, K, are coefficients of diffusivity and thermal conductivity of 

the body, respectively; for simplicity, we will consider them as well as 

all subsequent thermal and hydrodynamic coefficients to be constant.* 

The temperature will be measured from the melting point. lhe thermal 

values will be measured in mechanical units. 

The direct application of dimensional analysis [l I to problem (1.21, 

(1.3) does not permit its self-similar solution. However, substituting 

T= TOui, we see that u1 depends only upon n, t, al and 6 = fAvO/klTo 

and the application of dimensional analysis in this case shows that 

We obtain the final solution of the problem in the form 

* Assuming that some of these coefficients are functions of temperature, 

which actually is the case, we will not violate the self-similar 
characters of the solution of the problems being solved here; however, 

we will lose the possibility of obtaining the solutions in closed form. 
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The temperature of the boundary of the body is 

T,(O, t)= T,(-1+ ET) 
Therefore, melting will not occur, as long.as this temperature remains 

lower than the melting temperature, i.e. negative. 

Consequently, melting will not take place, if 6 < 6* = 2/ds and it 

must take place at 6 > 6 . Here and later, the asterisk indicates 
critical values. TherefoIe, at 6 > a,, the problem should be solved con- 

sidering the formation of a molten zone. 

4. At 6 > 8*, already at the initial moment, a weak wave of melting 

will progress from the boundary of the body inward; its law of motion 

n = x,(t) is unknown. In the region 0 < x < x,(t) we will have 

au __- 
at 

V PO ~_ 0 
i)& Navier-Stokes equation (1.6) 

(1.7) 

Here c 
p2 

is the specific heat of molten material. In the region x,(t) 

<r<oO 

(l-8) 

Additional conditions, obtained with consideration of (1.11, are 

?_I (0, t) = 2’0, 21 (20, q = 0, 
87’2 

ax .‘=_,, = 0 
I z 

I’:! (x,,, t) = T, (20, t) = 0 (7’2 (2, t) > 0, Tl@, 1) < 0) (l-9) 

where q is the heat of fusion of unit mass. 

It should be noted that for simplicity we assume that the melting 

temperatures are independent of the pressure, and that the density does 

not vary during the transfer from one to the other phase. 

As above, direct use of dimensional analysis for problem (1.6)-(1.9) 

leads to the conclusion that it has no self-similar solutions. However, 

by substituting u = u,V, T, = TollI, T2 = Toll2 and dividing the last of 
the (1.9) relations by k,, we see that the dimensionless functions V, 
II,, lJ2 depend upon z, t, u, al, a2, v02/TOc p2, K = k,/k, w/k,T,, con- 
sequently, in accordance with the n-theorem of dimensional analysis this 

relation is reduced to relations depending upon 
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z 
i=-, 

2b a1t 

j. = _v_ , a= 2- 2wal To2 
(11 a1 ’ n=-kx, m==F? 

x = -;- (I-10) 

i.e. the problem in fact has a self-similar solution. ‘lhe law of motion 

of a weak melting wave is determined up to a constant to by the formula 
- 

20 (t) = 250 l/a,t (1.11) 

The unknown constant t,, must be found during the course of the solu- 
tion of the problem. ‘Ike solution of the problem (1.6)-(1.91, which does 

not yet satisfy the last of the conditions (1.91, can be easily found in 
the following form 

(1.12) 

In these formulas to is still an unknown parameter. It should be found, 

by satisfying the last of the conditions (1.9). Inserting into that condi- 

tion functions (1.X!)-(1.141, we obtain a transcendental equation for 5, 

where 

(1.16) 

‘l’he study of this equation shows that it has at any K > 0, a > 0, 

h > 0, I > 0 and n > 0 a single root to > 0. If this root is small, it 

is approximately expressed by the formula 

(1.17) 

The small value of to signifies a relatively thin molten layer, a slow 
meltina. The expression (1.17) indicates that this takes place at a rela- 
tively low velocity uO, low viscosity v or low heat transfer coefficient 
of the liquid phase k, and also at relatively large heat transfer coeffi- 
cient of the solid phase k, or large diffusivity of the liquid phase a2 
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or large liquid phase specific heat c or at a very low initial tempe- 

rature of the medium T,,. All this full', conforms to physical intuition. 

It should be also noted that the rirrht-hand side of formula (1.17) 

does not contain the parameter n, i.e. that if the parameter to is small, 

it does not depend upon the heat of fusion q. This means that the law of 

motion of the melting front at 5‘,, << 1 does not depend upon the heat of 

fusion. 

The solution constructed above is applicable at condition 6 > S*, i.e. 

at 
fAvoG > _& 

&To i’ x 
(1.18) 

In particular, if all physical parameters of the medium and the 

magnitudes of A, TO are fixed, expression (1.18) determines the lower 
limit for the velocity uO, beyond which melting will begin.In fact, melt- 

ing does not occur if uO < uO*, and it takes place if vO > vO*, where 

v0* 
2 

=j&$$ (1.19) 

We note especially, that if vO is increased, while aoing through vO*, 

then 6 begins to alter not from the value to = 0, but from some finite 

value ! i.e. that no matter how little vO exceeds vO*, the melting 

front ~l~'~~spla=e itself with a to different from zero. In order to 

find Co mio 

[,(A, a, 

in the solution of equation (l.lS), which has the form: to = 

K, m, n), one must substitute its minimum value for m,i.e. 

nhi, -= m l = (Q’)~ / T,c,, 

At small values of 6, we obtain an approximate expression for to m1n, 

using (1.171, (1.19): 

(1.20) 

5. In the paper 1‘2 1, for the determination of the coefficient of 

friction between the surface of a projectile (penetrating at high velo- 

city through an armor plate) and the surface of the armor, the author 

assunes that the temperature at the contact surface increases rapidly owing 

to generation of a lare amount of heat, reaches the melting point and is 

then maintained at that level. This assumption enables us to solve a trans- 

ient heat transfer problem for the armorSprovided that the temperature at 

the boundary is equal to the melting temperature. Utilizing this solution, 

the author finds the coefficient of friction and determines the fraction 

of the prqjectile kinetic energy loss due to friction against the armor 

plate. 'Ihe solution developed here by us shows that the initial assumption 

used by the author of paper 12 1, strictly speaking, is incorrect: no 
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matter how small the viscasity of the liquid phase of the medin?@ is, at 
conditions when the boundary t~rature must exceed the meltinn tempe- 

rature, this temperature can not be maintained at the melting point, and 

melcin,q is bound to begin, However, if the viscosity of the liquid 

phase is relatively small, then, as the formula (1,171 shows, melting 

will t&e place slowly, 

Melting will never occur at any conditions if the viscosity is equal 

to zero, In this case at vD > t.$ the solution of our problem is fornmd 

in the fellowin~ manner, Besides the condition (I*31 at the boundary, 

the condition T1(O, tl = 0 is also given; i.e. the boundary temperature 

is assmd to be equal to the melting temperature. Since the problem thus 

becomes i~dete~ina~~* it is necessary to consider that the coefficient 

of friction f is no longer equal to the c~ff~c~e~t of dry frictian, Ix& 
is an unknown value determined from the solution of the problem, 

Physically this is explained by the fact that at these conditions the 

boundary is no lonmr solid, since the temperature on it is equal to the 
malting ~~~rature~ but it is not liquid eitherSas long as the medium 

can not m~lt~~~vided the liquid phase is an ideal liquid, ‘Ihe bounrfary 

is in a semi-liquid state such that the coefficient of friction on it 

should ht3ve a value prescribed by the condition of the problem, In the 

case discussed it 4s cfetermined by the formula 

where f is the coefficient of frictianl 

Consequently, the assumption in the paper 12 1 will be true under the 
condition that the viscosity of the melted armor is equal to zero; and 

if it is small, this assamption then can be regarded as an ~~~oxi~te 

bonndary condition and the results of the paper 12 I can be regarded as 
approximate. 

It sbculd be also noted that it is possible similarly to solve the 
friction problem of two bodies occupying two half spaces and to determine 
when raaiting of these bodies tiff be&, and w&h will begin melting 

first. Nere, however, we do not aive the solution of this problem, 

2. If a solid body begins to move within a viscous liquid (#as), then 

on account of viscous energy dissipation in the moving liquid and of the 
heat txansfer coefficient of the liquid and of the body, the latter fas 

well as the liquid1 will be heated, At. cerkn conditions this heating 
may lead tu melting of the body- For a ~~~~~~~iy~ description of this 
phenomenon, it is necessary to solve the problem of the motion of the 

fluid around the body, the motion of the melted phase and the temperature 
distribution in the liquid and in the body. The molting waves thus created 
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should here be regarded as weak ones. 'ihe mathematical difficulties 

associated with the solution of this problem are exceedingly great. 'Ihe 

problem here is considered in the simplest self-similar formulation; and 

in its simple form the solution obtained will reveal some qualitative 

features of the phenomena. 

Let a solid body, occupying a half space, bounded with viscous incom- 

pressible fluid (filling'the rest of the space) begin to move with a 

constant velocity vO parallel to the boundary. We will denote the initial 

temperatures of the fluid and of the body by ?',, and T30, respectively, 

the density and the viscosity of the liquid by pl, ul, the thermal con- 

ductivity and diffusivity by k,, aI; for the liquid phase of the body we 

will use also plr v2,k2. a2, and for the solid phase we will use k, and a f 

for the thermal conductivity and diffusivity . We will denote by q the 

heat of fusion. For simplicity we consider that all these coefficients 

are constant, and that the density of the body does not vary during melt- 

ing. The problem then is reduced to the evaluation of functions 

(where vl, v2 are velocities of the flowing liquid and of the liquid 

phase; T,, T2, T3 , 
from relationships 

corresponding temperatures and cPi specific heat) 

Here x0 = x0(t) is the law of motion of a weak melting wave which also 

should be determined. 

As in Section 1, it is shown that the problem has a self-similar solu- 

tion and that the dimensionless functions 
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Here z* = cP3?'* is the "temperature" of melting. 

The law of motion of the melting front is determined by the expression 

x0 I;: 2i0 I/a,t 72.3) 

where to is the constant which should be determined. The solution is 
given by the expressions 

u3 = 1 - (1 - 8,) ;--;yg (EO~E ,.:cg 

where the constants a, b, C,, C2, A,, A, are found from the relationships 
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Gcp, = &PI, 
92wG wnA2 ---~_ 

v,, v-ii2 

and the parameter to is obtained from the transcendental equation 

qrrio + VL - I)exp(-t02)+2[& 
1 -@Go) 98 L r/a, exp ( > 42 _ 

a2 

(2.6) 
0 

Let us find the limit 

Solving the problem with 

quiring the condition of 

we obtain the equation 

for velocity uO, above which melting begins. 

the asswgtion that there is no melting, and re- 

body teqerature equal to the melting temperature, 

from which n*= (v~*)~/z~~ is found, and consequently also uO*is the 

critical velocity. The same equation is obtained from equation (2.6) if 

in the latter we take tO = 0 which means that by increasing uO and going 

throuRh uO* , to will begin to increase from to = 0, which is different 

from the problem of the preceding paragraph. 

From the equation (2.7) we obtain 

Tn.+ == / xal ITi+ * 1J (alA) L 

wvz 0 -l)-(O-CpJJ,) 1 (23) 

or 

The condition that uoe2 > 0 is Riven in view of J(al, A,) > 0 by the 
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inequality 

ka 
kl f $(T* - Tm) > TI, - T, (2.10) 

‘Ihe melting will take place at any velocity, including u0 = 0, if this 

condition is not achieved. In the latter case melting will take place owing 
to high initial temperature of the liquid (TiO > T,), 

It is possible to show that at u0 > uO* the equation (2.61 has a 
unique root. Finally, we note, that since Aal, A,) + 0 as vi + 0, from 

the forumla (2.91 at condition (2.10) we obtain uO* + =, which is natural 

from physical considerations. 

Finally, in solving the problem discussed, the basic equation of the 
flow around elongated bodies can be somewhat simplified. lhis is done in 

the theory of an ordinary boundary layer, since the basic causes per- 

mitting the corresponding simplifications to be performed also remain in 
force here. ‘Ihis leads to the development of the corresponding theory of 

the boundary layer with melting. 
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